Optimal Energy Transfer in Light-Harvesting Systems.
نویسندگان
چکیده
Photosynthesis is one of the most essential biological processes in which specialized pigment-protein complexes absorb solar photons, and with a remarkably high efficiency, guide the photo-induced excitation energy toward the reaction center to subsequently trigger its conversion to chemical energy. In this work, we review the principles of optimal energy transfer in various natural and artificial light harvesting systems. We begin by presenting the guiding principles for optimizing the energy transfer efficiency in systems connected to dissipative environments, with particular attention paid to the potential role of quantum coherence in light harvesting systems. We will comment briefly on photo-protective mechanisms in natural systems that ensure optimal functionality under varying ambient conditions. For completeness, we will also present an overview of the charge separation and electron transfer pathways in reaction centers. Finally, recent theoretical and experimental progress on excitation energy transfer, charge separation, and charge transport in artificial light harvesting systems is delineated, with organic solar cells taken as prime examples.
منابع مشابه
Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).
Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosyn...
متن کاملEfficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial- temporal correlations
Understanding the mechanisms of efficient and robust energy transfer in light-harvesting systems provides new insights for the optimal design of artificial systems. In this paper, we use the Fenna-Matthews-Olson (FMO) protein complex and phycocyanin 645 (PC 645) to explore the general dependence on physical parameters that help maximize the efficiency and maintain its stability. With the Haken-...
متن کاملPathways of energy flow in LHCII from two-dimensional electronic spectroscopy.
Photosynthetic light-harvesting complexes absorb energy and guide photoexcitations to reaction centers with speed and efficacy that produce near-perfect efficiency. Light harvesting complex II (LHCII) is the most abundant light-harvesting complex and is responsible for absorbing the majority of light energy in plants. We apply two-dimensional electronic spectroscopy to examine energy flow in LH...
متن کاملStrategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids.
Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (∼95%) energy-transfer from fucoxanthin to chlorop...
متن کاملOptimal thermal bath for robust excitation energy transfer in disordered light-harvesting complex 2 of purple bacteria
The existence of an optimal thermal bath to facilitate robust energy transfer between the spectrally separated B800 and B850 rings in light-harvesting complex 2 (LH2) of purple bacteria is investigated via the multichromophoric Förster theory. Due to the inherent energy bias between the two rings, the energy transfer rate from B800 to B850 is maximized as a function of the bath coupling strengt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 20 8 شماره
صفحات -
تاریخ انتشار 2015